Jonah Bossewitch

G8200: Economic Sociology

Oct 15, 2009

Prof. David Stark

Reflexive Coding

Software, especially free and open source software (FOSS), is a strange socio-technical object.. Software's inherent malleability combined with the standing invitation to reflexively modify it, make it difficult to get a firm fix on this complex non-human actor. Software code symbolically represents both data and instructions, and in this sense all (running) software is performative. Many software programs can be accurately described as having agency, although this agency is not yet autonomous. Software code is also a form of human expression, is used to communicate ideas between programmers, and has even been considered a form of speech protected by the First Amendment.

Software's unique balance between rigidity and flexibility suggests that socio-software analysis warrants special considerations beyond the socio-technical accounts we have been discussing so far. This flexibility presents new possibilities for constructive collaboration as well as disaster.

Software affords new models of collaboration, as individuals and organizations can collaborate indirectly through the intermediary object of software. They can avoid the overhead of aligning budgets and deadlines, and leverage the modularity and configurability of software to simultaneously support divergent requirements. Large software projects can be conceived as ecologies made up of the

 technological platform, the communities, and the processes that bind them together. This ecological model of

 software projects incorporates the dynamic lifecycle of the project over time, and provides

 insight into how participants might behave under complex, unanticipated circumstances.

 Large projects typically involve a diverse range of participants (vendors, clients, users, etc) which are connected to each other through formal and informal

 structures and processes ranging from legal entities and contracts to technically mediated

 mailing lists and collaborative cyberspaces. The tools used to manage changes over time are often built upon the edifice of the free software movement, using many of the tools and practices

 found within those projects, infusing their project with the values of the culture they are built upon.

FOSS ecologies have been a breeding ground for experimenting with various models of

 structure and governance which promote constructionist learning within the community.

 Since writing software is an act of creative expression, it is predictable that the artifacts

 created by a software community capture the values of that community through the inclusion

 (and omission) of features and the metaphors used in the software they create. The recursive

 questioning of meta-structures is a habitual pattern of programmer's thinking, and it is no

 surprise to see this analytical gaze turned back on itself. The community's proximity to the

 architecture of their own communication channels encourages a reflexive attitude towards

 their own communicative superstructure.

Software can also amplify and accelerate the risk and stakes of collapse. The software that turned mortgages into bonds took on a life of its own, propagating and multiplying long after its author had moved on to other projects.
 Well, not completely on its own—all software needs a environment supported by humans to run in, but this software was promiscuously copied and reflexively modified to embody the corrupt values baked into it:

As CMOs became more complicated, my job was to make everything seem simple—to, in effect, mask the complexity that would’ve made the bonds difficult to trade. We invented a language for mortgage-backed bonds. I called it BondTalk... I was told to rewrite the entire system. Make it all push-button. Flexible and faster. Traders told us what they wanted, and we wrote the software code to make it possible. We were on the cutting edge... Working with another programmer, I wrote a new mortgage-backed system that enabled investors to choose the specific combinations of yield and risk that they wanted by slicing and dicing bonds to create new bonds. It was endlessly versatile and flexible. It was the proverbial money tree... Our software was rolled out to ride the latest wave. Traders loved it. What had taken days before now took minutes. They could design bonds out of bonds, to provide the precise rate of return that an investor wanted. I used to go to the trading floor and watch my software in use amid the sea of screens. A programmer doesn’t admire his creation so much for what it does but for how it does it. This stuff was beautiful and elegant... The drive to simplify the user’s contact with the machine has an inherent side effect of disguising the complexity of a given task. Over time, the users of any software are inured to the intricate nature of what they are doing. Also, as the software does more of the “thinking,” the user does less.

Software encodes knowledge, but that knowledge can be forgotten as the software performs by rote. A trader's robots need to be piloted, but the robots might keep performing long after anyone remembers the coded intensions. We may need to develop a richer vocabulary to trace the patterns of influence of software actors as they interact and influence our socio-software networks.

�	 Michael Osinski, New York Magazine, “My Manhattan Project: How I helped build the bomb that blew up Wall Street.”, Published Mar 29, 2009. <http://nymag.com/news/business/55687/>

�	Ibid.

